Microbial Matrix Systems Inc.

P.O.Box 209 2300 Ferry St. SW #9 Tangent, OR 97389 Albany, OR 97322

Client: Satori Farms Farm: Satori Farms

29-Jul-25

Lab: 541-967-0554 Fax: 541-967-4025

Email: lrogers@microbialmatrix.com

Bacteria and Fungi

Sample #	Sample ID GDW		Active Bacteria	Active Fungi	Total Bacteria	Total Fungi	Fungal
	Desired Range		(100-200μg)	(2 -10μg)	(50 - 300μg)	(100 - 200μg)	Dia
4025	B-1	0.91	1.97	0.00	238.30	14.51	2.5

Nutrient cycling or the mineralization of plant nutrients is dependent on metabolically active bacteria and fungi that convert nutrients from soil, fertilizers, compost, bokashi and soil amendments into an oxidized plant available form. For example, plants do not take up urea or ammonium. Urea or ammonium must be converted by Microbes into nitrate which is the form that plant roots can easily absorb.

Protozoa

Assay	Flagellates	Amoeba	Ciliates	Protozoa are predators that feed on bacteria and sometimes fungi. The result of the predation is the
Desired	10,000/gdw	10,000/gdw	50-70/ml	availability of nutrients for both plants and soil microbes. The C:N ratio of protozoa is 3:1 to 10:1.
Range				The bacteria consumed by protozoa have too much nitrogen for the amount of carbon that protozoa need.
Sample # Sample ID The protozoa release the excess nitrogen in the form			The protozoa release the excess nitrogen in the form of ammonium. Bacteria take that ammonium and	
4025 B	3-1 0	0	0	convert it into nitrate for plant roots.

There were no protozoa assessed in Bokashi. Bokashi moisture is at 10% which is low. Moisture is needed for bacterial activity and hence protozoa activity. While Protozoa component is low there is significant colony forming units of Free Living Nitrogen Fixing Bacteria that were assessed in Functional Group Analysis.

Microbial Matrix Systems Inc. 2300 Ferry St. SW Ste. #9 Albany, OR 97322 Lab: 541-990-0439

Client: Satori Farms 7/29/2025

Keystone Functional Group	Effect on Plant Growth and Soil Functions	Desired Range in Soil Colony Forming Units per gram	Sample ID: #4025 Bokashi	
Endosporeforming Bacteria	Enhance nutrient and water uptake for plants; improve soil structure and reduces plant stress (salinity, heat and drought)	1x10 ³ – 1x10 ⁷	3.4 x 10⁵	
Free-living Nitrogen Fixing Bacteria	Converts atmospheric nitrogen into forms usable by plants, boosting growth and soil nitrogen levels	1x10 ⁶ – 1x10 ⁷	1.14 x 10 ⁷	
Heterotrophic Bacteria	Increase soil aeration, water infiltration, and organic matter decomposition, benefiting plant roots	1x10 ⁶ – 1x10 ⁷	3.8 x 10 ¹⁰	
Phosphorus Solubilizing Bacteria	Increase phosphorus uptake in plants, improving growth and soil nutrient availability	1x10 ³ – 1x10 ⁶	1.6 x 10 ⁶	
Psuedomonads (Fluorescent and Nonfluorescent)	Produces Siderophores for Iron chelation, Induced Systemic Responses for Disease Suppress, Mitigates plant stresses,	1x10³ – 1x10 ⁶	1 x 10 ¹	
Cellulose Degrading Bacteria	Break down organic matter, recycling nutrients critical for plant health and fertile soil	Fluctuates with presence of plant residue and environment (4 diverse colony types)	3.1 x 10 ⁷	

Comments: Bokashi contains a diverse range and sufficient population that may help to improve plant and soil functions. While Bokashi is the result of fermentation primarily of *Lactobacilli* there are bioactives that *Lactobacilli* produce that can encourage the growth of other bacteria found in the feedstock and media used.